Multivariate adaptive approach for monitoring simple linear profiles

نویسندگان

  • Galal M. Abdella
  • Kai Yang
  • Adel Alaeddini
چکیده

Adaptive sample size and sampling intervals schemes have been widely used to improve the statistical efficiency of Hotelling T control chart in detecting small changes when the quality of a product or a process can be characterised by the multivariate distribution of quality characteristics. In this paper, we design a Hotelling T scheme varying sample sizes and sampling intervals (VSSI-T) for accelerating the speed of detecting off-target conditions in linear profile parameters. We investigate the statistical performance of the adaptive approach versus its fixed sampling counterparts. To find the optimal setting of the VSSI-T, we build an optimisation model solved using genetic algorithm (GA). Also, average time to signal (ATS) is considered as the objective function of the model and estimated using the Markov chain fundamentals. The comparative studies reveal the potentials of the adaptive scheme in improving the performance of the Hotelling T control chart in monitoring linear profiles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase II monitoring of multivariate simple linear profiles with estimated parameters

In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...

متن کامل

A Generalized Linear Statistical Model Approach to Monitor Profiles

Statistical process control methods for monitoring processes with univariate ormultivariate measurements are used widely when the quality variables fit to known probabilitydistributions. Some processes, however, are better characterized by a profile or a function of qualityvariables. For each profile, it is assumed that a collection of data on the response variable along withthe values of the c...

متن کامل

Investigating Effect of Autocorrelation on Monitoring Multivariate Linear Profiles

Abstract Profile monitoring in statistical quality control has attracted attention of many researchers recently. A profile is a function between response variables and one or more independent variables. There have been only a limited number of researches on monitoring multivariate profiles. Indeed, monitoring correlated multivariate profiles is a new subject in the fileld of statistical proces...

متن کامل

A Self-starting Control Chart for Simultaneous Monitoring of Mean and Variance of Simple Linear Profiles

In many processes in real practice at the start-up stages the process parameters are not known a priori and there are no initial samples or data for executing Phase I monitoring and estimating the process parameters. In addition, the practitioners are interested in using one control chart instead of two or more for monitoring location and variability of processes. In this paper, we consider a s...

متن کامل

Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper)

In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or ordinal variables. In this paper, profiles with multinomial response are studied. For this purpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDATS

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014